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EFFICIENT COMPUTABLE HOMOMORPHISMS ON
HESSIAN CURVES
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ABSTRACT. This paper presents Frobenius endomorphisms on gener-
alized Hessian curves and twisted Hessian curves. It gives an efficient
computable homomorphism to compute the point multiplication on Hes-
sian curve over a finite field. As an application, we describe the GLV
method combied with the Frobenius endomorphism over the curve to
speed up the scalar multiplication.
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1. INTRODUCTION

Elliptic curve cryptography was independently proposed by Koblitz [14]
and Miller [15] in 1985. The elliptic curve cryptosystem is a public key cryp-
tosystem based on the discrete logarithm problem in the group of points on
a curve. In elliptic curve cryptosystems, the efficiency depends essentially on
the fundamental operation of the scalar multiplication [n] P for a given point
P on an elliptic curve E and an integer n. In general, the computational
speed of a scalar multiplication [n]P depends on finite field operations, curve
point operations, and representation of the scalar n[20, 8].

There are numerous investigations of fast scalar point multiplication on
elliptic curves over large prime fields or binary fields [1, 11, 7, 17, 18]. For
elliptic curves, the scalar multiplication can be done with various methods(a
good reference is [1]). If an elliptic curve admits an efficient endomorphism,
it can be used to speed up scalar multiplication. In [11], Iijima, Matsuo,
Chao and Tsujii presented an efficiently computable homomorphism on el-
liptic curves using the Frobenius map on the quadratic twists of an elliptic
curve. The Gallant-Lambert-Vanstone (GLV) gave suitable efficiently com-
putable endomorphisms on elliptic curves for speeding up point multiplica-
tion [7].

There are several models of elliptic curves to provide the efficient compu-
tation and implement for cryptography in recent years [4, 10]. In [12], Joye
and Quisquater proposed Hessian elliptic curves with the formulae of point
addition and dubling. Farashahi and Joye presented the efficient arithmetic
on generalized Hessian curves[5]. The arithmetic formulae of twised Hessian
curve is presented in [2].

In this paper, we present the Frobenius endomorphisms on generalized
Hessian curves and twisted Hessian curves. It gives a scalar multiplica-
tion algorithm on Hessian curves using Frobenius expansion. Applying the
Frobenius endomorphism on Hessian curve, we construct a Frobenius map
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defined on the quadratic twist of a Hessian curve. To speed up the scalar
multiplication on Hessian curves, we use the GLV method combined with
the Frobenius endomorphism over the curve.

This paper is organized as follows. Section 1 illustrates some basic notions
on Hessian curves and twisted Hessian curves. Second section gives the
birational equivalence between Hessian curve and Weierstrass equation of
elliptic curve. We also describe Frobenius endomorphism for Hessian curves
and some basic properties.

2. PREMIMINARIES

2.1. Hessian Curves. Let K be a field with char(K) # 2 and K its alge-
braic closure. A Hessian curve over K is defined by the symmetric cubic
equation

Hy : 2%+ 43 +1 = day,

where d € K and d* # 27 in [9]. Furthermore, the generalized form of
Hessian curves, called twisted Hessian as well, has been studied in [2, 5]. A
generalized Hessian curve H.q over K is defined by the equation

H.q : 2 4+ 3 + ¢ = duay,

where ¢,d € K with ¢ # 0 and d® # 27c. A Hessian curve is a generalized
1 (d(d3+36c))3

Hessian curve with ¢ = 1. The j-invariant is given by j = +( =z

Let P = (x1,71) and @ = (x2,y2) be two finite points on H.q. The
addition formula denoted by P + @Q = (3, y3) with

2
TiYs — T
=2 — and y3 = T2 — 1291 21/1.
Toyo — T1Y1 ToY2 — T1Y1

If P=(Q and [2]P = (z3,y3), then

3 3
yi{¢c — x1(c—
€3 = ) (3 31) and y3 = (3 931)
Ty — Y1 r1— Y1

Moreover, the additive inverse of a point (x1, y1) on He 4 is the point (y1, z1).
A generalized Hessian curve in projective coordinate is defined by the
equation

Heg : XP+Y3 4+ 2% =dXYZ,

where ¢,d € K with ¢ # 0 and d® # 27¢. The curve He,q has the points
(1: —w : 0) of order 3, where w is a primitive cube root of 1 in K. The
neutral element of the group K-rational points of H, 4 is the point at infinity
(1:—1:0) that we denote by Oy,_,. For the point P = (X1 : Y1 : Z1) on
Hed, we have —P = (Y1 : X1 : Zy).

The obtained point addition and doubling formulae on generalized Hessian
curves in projective coordinates as follows: Let P = (X; : Y7 : Z;1) and
Q = (X3 : Y2 : Zy) be two points on H. g4, then P+Q = R = (X3 : Y3 : Z3),
where

X3 = XoZoY? — X1 Z\YE, Y3 = YoZo X} — V1721 X2, Zs = XoYoZ? — X\ Y1 73
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and [2]P = R = (X3 : Y3 : Z3), where
X3 =Y1(cZ} - X3), Ya= X0 (Y — ¢Z3}), Z3 = Z1(X} - YP).

The cost of point addition algorithms is 12M [3, 12, 19]. In this case, the
computational cost of point addition is 4M, 3M, or 2M correspond to use of
3, 4 or 6 processors, respectively. The point addition formulae are complete
if the difference of all pairs of points on H.g4 is not equal the identity. In
[3], the cost of point doubling is 6M+3S+1D, where D is the cost of a
multiplication by the constant c.

2.2. Twisted Hessian Curves. A twist Hessian curve over a field K is
defined by the equation

Hfl’d saxd + P 4+ 1 = day,
where a,d € K. It has a specified point (0, —1). The sum of two finite
points (z1,y1) and (z2,y2) on H. , is given by (z3,ys3), where

3 3 3
T — Y171 Y1 — axy
aylxl — Y1 aylml — Y1

A twisted Hessian curve in projective coordinate over K is defined by
Hy g o aXP+YP 4+ 2% =dXYZ,

where a,d € K and a(27a — d3) # 0. The neutral element of Hz’d(K) is
the point at infinity (0 : —1: 1) that we denote by OHfa, e The special case
a =1 of a twisted Hessian curve is simply a Hessian curve. For the point
P=(X1:Y1:Z1)on Hé,d’ we have —P = (X1 : Z1 : Y1).

The point addition on twisted Hessian curves in projective coordinate as
follows: Let P = (X1,Y1,Z1) and Q = (X, Y2, Z2) be two points on H}, ;,
then P+ @Q = R = (X3,Y3, Z3) where,

X3 = ZiX171 — Y XoYa, Y3 = YiV1 721 — a X7 X 2o,
Z3 = aX3X1Y1 — Z3YoZs.

The above formula is described by the rotated addition law in [2]. The
cost of point addition algorithm is 12M [2].

3. FROBENIUS ENDOMORPHISM ON (TWISTED) HESSIAN CURVES

In this section, we construct the Frobenius endomorphisms on a gener-
alized Hessian curve and twisted Hessian curve. It gives an efficient com-
putable homomorphism to compute the point multiplication elliptic curve.

Every elliptic curve can be written in Weierstrass form, only those that
contain poins of order 3 can be written in Hessian curve and twisted Hessian
curve.

Theorem 3.1. Let E be an elliptic curve over a field K. If the group
E(K) has a point of order 3 then E is isomorphism over K to a generalized
Hessian curve. Moreover, if K has an element w with w?> +w +1 =0, then
the group E(K) has a point of order 8 if and only if E is isomorphic over
K to a generalized Hessian curve.

Proof. See [5]. O

137



138

G. Sohn

We note that the elliptic curve E over a field K has a point of order 3 if
and only if it has a Weierstrass model

(1) Euas y2z + ajzyz + a3y22 = 2>,

For this, see [13]. In [2], Eq, 45 is called triangular curve because its Newton
polygon is a triangle of minimum area.

From Theorem 3.1, if the characteristic of a field K is not 3, the gener-
alized Hessian curve H, g4 is isomorphic over K(w) to the Weierstrass curve
Eq ay With a; = d/3, a3 = (d® — 27¢)/36.

Every elliptic curve in Weierstrass form Ey, 4, via the map (z,y,z) —
(X,Y, Z) defined by

X =waiz + (w— 1)y + (2w + 1)asz,

Y=—(w+Dazr— (w+2)y — 2w+ 1)azz, Z=ux.

is birationally isomorphic to the generalized Hessian curve H. g4 over K(w).
The inverse map Heg — Eay a5, (X, Y, Z) — (2,9, 2) is given by

1 1 1
2) =2 y=—(X+Y +a2), z= ——(wX+ —Y—l—alZ).

3 3a3 w
Now we denote the map H.4 — Eq, 45 by o and o~! denotes its inverse
transformation.

Remark 3.2. Consider the elliptic curve Eq, o, defined in (1). If p # 3 and
a} — 27a3 is a cube in K, we let ¢ = 1 and d = 3(a; + 26)/(a1 — §), where
63 = a$ — 27a3. Then the map (z,vy,2) — (X,Y, Z) given by
X =(2a1 +0)z+ 3y +3azz, Y = —(a1 — §)x — 3y,
Z = —(a1 — )z — 3azz
is an isomorphism over K between Eq, 4, and H. 4. Themap o : (XY, Z) —
(z,y, z) is given by

71 - (a1—(5) d
1= (X+Y +2), y= - (X+§Y+Z),
(a1 —9) d

Now we define the g-power Frobenius endomorphism 7 of Eg, 4,
™o Ea1,a3 — Eal,aga (x>y) = (mq, yq).
We construct an endomorphism of the generalized Hessian curve over a finite

field.

Lemma 3.3. Let H.q4 be a generalized Hessian curve defined over a finite
field Fq and Eq, 4, be the birational equivalent elliptic curve of H.q over Fy.
Let $Eqy 03 (Fq) = q+1—t, [t| < 2,/q and let o be the birational map defined
as above. Let w be the g-power Frobenius endomorphism over Eq, .. Define
VHey = o lro. Then

(1) Y2, € End(Hea), (i-e., n,, is an endomorphism of He ).

(2) For all P € H,q4(F,;) we have

V3, ,(P) = [tlon, .(P) + [g] P = On, -
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Proof. First note that o is an isomorphism defined over a finite field Fy, that
7 is an isogeny from Eq, 44 to itself defined over Fy. Hence 13, , is an isogeny
of Hcq to itself defined over [Fy. Therefore 3, , is a group homomorphism.

For P € H,.4(F,), let’s denote o(P) = Q € Eg, 45(F,). Then the char-
acteristic polynomial y,(z) = 22 — tx + ¢, |t < 2,/q of the g-power Frobe-
nius endomorphism 7 of E,, 4, satisfies (r* — [t]7 + [¢])P = Og,_,, for all
P € Eq, o3(Fg). Hence,

o M@~ [t]n + [a)o(P) = Ox, ,-
Therefore

V3, ,(P) = [tlon, .(P) + [g] P = On, -

Now we define the g-power Frobenius endomorphism of #H. 4
Tt Hea = Hea, (X,Y,Z2) = (X9,Y9,Z9).

Theorem 3.4. Let H.q be a generalized Hessian curve defined over a finite
field Bq and §H.q(Fq) = g+ 1 —t. Then the Frobenius endomorphism 7 of
Hea satisfies

(7 — [t)7 + [a)P = O, ,,
for all P € Heq(Fy).

Proof. Let E,, 4, be the birational equivalent elliptic curve of H. 4 defined
over [y, and ¢3;_ , be the endomorphism of H, 4 in Lemma 3.3. By definition
of iy, . for all P = (XY, Z) € Hea(Fy),

Vi, (XY, Z) = (07 'n0)(X,Y, Z)

1 1 1
— (1 _ = T il
= (o~ 1n) (Z, FXHY +a2) o (wX +-Y+ a1Z))
— o720 Lxoayrsatzn, - L (wrx+ Lyay az7))
Y = 34ad wi !
= (XY 29),
where a1, a3,w € Fy.
Hence we have for all P € H,q(F,), ¥y, ,(P) = T(P) and $Eq,, q,(F,) =

Hep(Fy) = g + 1 — t. Hence by Lemma 3.3, we can complete the proof of
Theorem. (I

Now we consider the Frobenius endomorphism on twisted Hessian curves
over a finite field IF,. Each twisted Hessian curve over a finite field I, has a
rational point of order 3. Every elliptic curve over F, with a point of order
3 is isomorphic to a twisted Hessian curve.

Lemma 3.5. Let a,d be elements of a field K such that a(27a — d®) # 0.
Let K be a field with a primitive cube root of 1. Then every twisted Hessian
curves Héd’ with @ = d® — 27a,b = 3d is birationally equivalent over K to

an Weierstrass equation Eqq in (1).

Proof. See Theorem 5.3 in [2]. O
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From Lemma 3.5, one can see that there exists an Weierstrass equation

Eqq over K such that H! (K) = E44(K). Let w be a primitive root of 1
in K and p be the isomorphism

o Ega— M g (,y,2) = (X,Y, 2),
where
X=uz Y=wly+dr+az) —w’y—az, Z=uw(y+dr+az)—wy—az.

The netural point (0,0, 1) is mapped to (0, —w, 1). The inverse transforma-
tion is given by

/u71 : Héj%Ed,m (XyKZ)'_)(xvy7z)7
where
d 9 1
z=X, y:—g(dX—l—wY—i—w Z), 22—3—(dX+Y+Z).
a

The following lemma gives an endomorphism of twisted Hessian curve
over a finite field Fy.
Lemma 3.6. Let ’H‘;J be a twisted Hessian curve defined over a finite field

Fq and Eqq be the birational equivalent elliptic curve of ’Hf_”z over Fy. Let

1E40(Fq) = ¢+ 1—t, |t| < 2\/q and let pu be the birational map defined
as above. Let m be the q-power Frobenius endomorphism over Eqq. Define
Pyt = pwtmp. Then
(1) ’l/JrH;E € End(’H;J), (i.e., 1 is an endomorphism of ’Hé’g).
(2) For all P € ’H;J(Fq) we have
Ve (P)= [t (P) +1alP = Oyt
Proof. The proof is similar to that of Lemma 3.3, we omit it here. g

Theorem 3.7. Let Hg g be a twisted Hessian curve defined over a finite
field ¥y and ﬁ’Hé #(Fq) = q+1—t. Then the Frobenius endomorphism 7 of
Hf,l - satisfies

(72— [ + [d)P = O,
for all P e M ,(F,).
Proof. Let Eqq be the birational equivalent elliptic curve of ’Hé g defined over

Fy, and 13, _be the endomorphism of Hg g 1n Lemma 3.6. By definition of

d

Y for all P = (X,Y,Z) € H, 1(Fq),
Uy (X,Y,2) = (u™'mp)(X, Y, Z)
-1 d 2 1
= (u~7) (X7 ~2(dX + WY +w?Z), ——(dX + Y + Z))
3 3a

—1 d? 2
=u (Xq’_ﬁ(quq+wqu+quq)’_
= (X9, v9, 29),

1
e (dQXq + Y4¢ + Zfl))
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where a,d,w € Fy.
Hence we have for all I € H; ;(Fy), Z/’H;)J(Fq)(P) = 7(P) and §Eq4(F,) =

1H! ;(Fy) = ¢+ 1 —t. Hence by Lemma 3.6, we can complete the proof of
Theorem. O

We present scalar multiplication for special types of ellitpic curves with
efficient computable endomorphism of generalized Hessian curves. The GLV
method gave efficiently computable homomorphism of elliptic curve where
E is defined over F, with the large characteristic.

If the characteristic of I, is not 2, we can simplify the equation by com-
pleting the square. Then the Weierstarss form of (1) gives an elliptic curve
equation of the following form :

3) E' :y? =42 + a2 + 201037 + a2,

where a1, a3 € Fy. In order to give fast formulas for curve arithmetic, it is
desirable for the curves that we consider to have twists. Let u be a non-
square in F 2. Define A = ua?, B = 2u®ajas, and C' = u®a3. The quadratic
twist of (3) is

E' : y? =423 + A2® + Bz + C.

For P = (z,y) € E', we have —P = (x,—y). The corresponding isomor-
phism ¢ : B/ — E* defined over F 2 is given by

(4) o,y 2) = (uz, /iy, z)
and is defined over F.

Theorem 3.8. Let H.q be a generalized Hessian curve over Fy with ¢ +
1 — t points. Let 7 be the g-power Frobenius map on H.q. Write E* for
the quadratic twist of E' over Fp2 and let ¢ : Heq — E! be the twisting
isomorphism defined over Fpa. Let ¢ = oo~ L. Let r|§E(F,2) be a prime
such that r > 2q. Let P € E'"(F2)[r]. Then (P) =[NP where X\ € Z/rZ
satisfies A2 +1=0 (mod r). Also, we have ¥)(P)?> + P = Op:.

Proof. Since ¢ and 7 are group homomorphisms it follows that « is too. We
have H,q(F,a) = E*(F ) as groups.

If r|$E*(F,2) is prime such that r > 2¢, then r { $H.4(Fp2) = (¢ +
1—t)(g+ 1+t) and r|fE (Fpa) = 4E (F2)4E*(F2) but r?|E"(F,). This
implies that for P € E*(F,2)[r], ¢(P) belongs to E*(F2)[r]. It follows that
for P € E*(FF;2)[r], there exists A € Z such that ¢(P) = [\]P.

From (2), (4), we have that ¢ is

3

B N 1 1
#(X,Y, 2) —(uZ, —Y (X 4Y +d2),— (X + =Y +dZ)).

a
and the inverse map ¢! is

wd (w—1)

0 (0, y.2) = (oo + W+Dd  (w+2)

y+ 2w+ 1)az, — T — Y

Ve TG
— (2w + 1)az, %)
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Then we have the map 1 is

'L/)(xvyvz) = (¢7r¢71)($,y,z)
wd w—1 w+1)d w+ 2
= ((bﬂ')(?x—i-(ﬂg)y+(2w+1)az,—( Z ) x—(\/;?))y

—(2w + 1)az, E)
u

(w+ 1,

449 _ 1)
= <w ¢+ w=1) Y+ 2w+ 1)%a%29, —
q 3 ud
w Ty u
(w+2)1 , x4
WA (9 4 1)9a957 T
TR (2w + )Gz,uq)
3 3,0 1
— (L‘xq ﬂ(dq —d)at + \/ﬂ;/ 7__((dq(wq+1 Wt )
ud 3ud (Vu’)1 3a

q q
Hd) =)+ (W — W w+2) L
us (Vu)

+a?(2w + 1)q+1zq)

for P = (z,y,2) € EYF,). Also, since 27" = x, y?" = y for z,y € F 2, we

have
1—q 3 1—q
2 ) Y 2 W) e q712qq2)_,.7 — (o
¢ ('L:y) _(qu_ql a( 71’3)q27qy 7(a ) z - ('1’7 yvz) - (17y7 2)7

where u € Fp2 (ie., u?” = d) and \/u® ¢ Fg2 (and so, (Vi) = — /).
Therefore,
Y*(P)+ P = Og.
]

The following theorem is an application of GLV method to point multi-
plication of projective twisted Hessian curve.
Theorem 3.9. Let H;J be a Hessian curve over Fq with ¢g+1—1t points. Let
7 be the g-power Frobenius map on H; g Write E for the quadratic twist
of 7—[;- over Fp2 and let b Hf‘z,& — E* be the twisting isomorphism defined
over Fga. Let ¥ = ¢rdt. Let r|4E'(F2) be a prime such that r > 2q. Let
P € EYFp)lr]. Then ¢)(P) = [A\|P where X\ € Z/rZ satisfies > +1 = 0
(mod r). Also, we have ¢(P)? 4+ P = Op:.

Proof. The proof is similar to that of Theorem 3.8, we omit it here. 0

4. CONCLUSION

In this paper, we presented the Frobenius endomorphisms on generalized
Hessian curve and twisted Hessian curves. This leads to an efficient point
multiplication on Hessian curve over a finite field. Moreover, we constructed
a Frobenius map defined on the quadratic twist of a special type of elliptic
curve and showed how to it to accelerate the scalar multiplication on this
curve.
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